Home page  |  About this library  |  Help  |  Clear       English  |  French  |  Spanish  
Expand Document
Expand Chapter
Full TOC
Preferences
to previous section to next section

close this bookEstudio de Caso: Vulnerabilidad de los Sistemas de Agua Potable Frente a Deslizamientos (OPS; 1997; 106 paginas)
View the documentRESUMEN
open this folder and view contentsCAPÍTULO 1: INTRODUCCIÓN Y ANTECEDENTES
open this folder and view contentsCAPÍTULO 2: CARACTERIZACIÓN DE LAS AMENAZAS NATURALES
close this folderCAPÍTULO 3: GUÍA PARA IDENTIFICAR PROBLEMAS DE DESLIZAMIENTOS
View the documentClasificación del tipo de fallas de taludes
View the documentFactores que influencian la estabilidad de los taludes
View the documentCaracterización del talud mediante ensayos
View the documentEvaluación de la estabilidad de un talud
View the documentMétodos para estabilizar taludes
open this folder and view contentsCAPÍTULO 4: VULNERABILIDAD DE LOS COMPONENTES DEL SISTEMA
open this folder and view contentsCAPÍTULO 5: PROCEDIMIENTOS PARA EVALUAR LA CONFIABILIDAD DEL SISTEMA ANALIZADO
open this folder and view contentsCAPITULO 6: ESTUDIO DE CASO
View the documentCAPITULO 7: MATRICES DE VULNERABILIDAD
View the documentREFERENCIAS CITADAS EN EL TEXTO
open this folder and view contentsANEXOS
View the documentCubierta posterior
 

Métodos para estabilizar taludes

Tan pronto se comprueba que hay un riesgo de inestabilidad en un determinado talud, se debe buscar la mejor solución y considerar aspectos de costo, naturaleza de las obras afectadas (tanto en la cresta como al pie del talud), tiempo estimado en el que se puede presentar el problema, disponibilidad de los materiales de construcción, etc.

Existen tres grandes grupos de soluciones para lograr la estabilidad de un talud:

 

Aumentar la resistencia del suelo: son las soluciones que aplican drenaje en el suelo para bajar el nivel freático o la inyección de substancias que aumenten la resistencia del suelo, tales como el cemento u otro conglomerante

Disminuir los esfuerzos actuantes en el talud: soluciones tales como el cambio de la geometría del talud mediante el corte parcial o total de éste a un ángulo menor o la remoción de la cresta para reducir su altura.

Aumentar los esfuerzos de confinamiento (σ3) del talud: se puede lograr la estabilización de un talud mediante obras, como los muros de gravedad, las pantallas atirantadas o las bermas hechas del mismo suelo.

En la siguiente sección se discutirán diversas soluciones.

Cambio de la geometría

El cambio de la geometría de un determinado talud puede realizarse (figura 3.12) mediante soluciones tales como la disminución de la pendiente a un ángulo menor, la reducción de la altura (especialmente en suelos con comportamiento cohesivo) y la colocación de material en la base o pie del talud (construcción de una berma); en esta última solución es común usar material de las partes superiores del talud.


Figura 3.12 Métodos para estabilizar un talud: (a) drenaje; (b) cambio de la geometría (Hunt 1984)

La consecuencia directa de realizar un cambio favorable en la geometría de un talud es disminuir los esfuerzos que causan la inestabilidad y, en el caso de la implantación de una berma, el aumento de la fuerza resistente. Es importante destacar que la construcción de una berma al pie de un talud debe tomar en cuenta la posibilidad de causar inestabilidad en los taludes que se encuentren debajo, además, se deben tomar las previsiones para drenar el agua que pueda almacenarse dentro de la berma, ya que es probable que pueda haber un aumento de la presión de los poros en los sectores inferiores de la superficie de falla, lo que acrecienta la inestabilidad.

Drenaje

La presencia de agua es el principal factor de inestabilidad en la gran mayoría de las pendientes de suelo o de roca con mediano a alto grado de meteorización. Por lo tanto, se han establecido diversos tipos de drenaje con diferentes objetivos (figura 3.22). A continuación se exponen los tipos de drenaje más usados para estabilizar taludes.

 

Drenajes subhorizontales: son métodos efectivos para mejorar la estabilidad de taludes inestables o fallados. Consiste en tubos de 5 cm o más de diámetro, perforados y cubiertos por un filtro que impide su taponamiento por arrastre de finos. Se instalan con una pequeña pendiente hacia el pie del talud, penetran la zona freática y permiten el flujo por gravedad del agua almacenada por encima de la superficie de falla. El espaciamiento de estos drenajes depende del material que se esté tratando de drenar y puede variar desde tres a ocho metros en el caso de arcillas y limos, hasta más de 15 metros en los casos de arenas más permeables.

Drenajes verticales: se utilizan cuando existe un estrato impermeable que contiene agua emperchada por encima de un material más permeable con drenaje libre y con una presión hidrostática menor. Los drenajes se instalan de manera que atraviesen completamente el estrato impermeable y conduzcan el agua mediante gravedad, por dentro de ellos, hasta el estrato más permeable, lo que aliviará el exceso de presión de los poros a través de su estructura.

Drenajes transversales o interceptores: se colocan en la superficie del talud para proporcionar una salida al agua que pueda infiltrarse en la estructura del talud o que pueda producir erosión en sus diferentes niveles. Las zonas en las que es común ubicar estos drenajes son la cresta del talud para evitar el paso hacia su estructura (grietas de tensión), el pie del talud para recolectar aguas provenientes de otros drenajes y a diferentes alturas del mismo

Drenajes de contrafuerte: consiste en la apertura de zanjas verticales de 30 a 60 cm de ancho en la dirección de la pendiente del talud para rellenarlas con material granular altamente permeable y con un alto ángulo de fricción (> 35°). La profundidad alcanzada deberá ser mayor que la profundidad a la que se encuentra la superficie de falla para lograr el aumento de la resistencia del suelo no solo debido al aumento de los esfuerzos efectivos gracias al drenaje del agua que los reducía, sino también al aumento del material de alta resistencia incluido dentro de las zanjas.

Esta solución puede ser útil y de bajo costo en el caso de taludes hechos con materiales de baja resistencia, tales como arcillas y limos blandos o con presencia de materia orgánica en descomposición que tengan entre tres y ocho metros de altura y superficies de falla que no pasen de los cuatro metros.

Soluciones estructurales

Este tipo de soluciones generalmente se usa cuando hay limitaciones de espacio o cuando resulta imposible contener un deslizamiento con los métodos discutidos anteriormente. El objetivo principal de las estructuras de retención es incrementar las fuerzas resistentes de forma activa (peso propio de la estructura, inclusión de tirantes, etc.) y de forma pasiva al oponer resistencia ante el movimiento de la masa de suelo.

Entre las soluciones estructurales más usadas se encuentran las siguientes:

 

Muros de gravedad y en cantiliver: la estabilidad de un muro de gravedad (figura 3.13 a y b) se debe a su peso propio y a la resistencia pasiva que se genera en la parte frontal del mismo. Las soluciones de este tipo son antieconómicas porque el material de construcción se usa solamente por su peso muerto, en cambio los muros en cantiliver (figura 3.13 c), hechos de concreto armado, son más económicos porque son del mismo material del relleno, el que aporta la mayor parte del peso muerto requerido.


Figura 3.13 Muros a) Muro de gravedad


Figura 3.13 Muros b) Muro de semigravedad


Figura 3.13 Muros c) Muro en Cantilever

Se debe tener en cuenta que al poner una estructura con un material de muy baja permeabilidad, como el concreto, al frente de un talud de suelo que almacene agua en su estructura, es muy probable que aumente la presión hidrostática en la parte posterior del muro. Para evitar este problema se debe colocar drenajes subhorizontales a diferentes alturas del muro con el objetivo de disipar el exceso de presión. Un tipo de muro de gravedad que ayuda en este aspecto, es el muro de gavión que al no tener ningún agente cohesionante más que la malla que une los gaviones, permite el paso de agua a través de los mismos. Estos muros además de ser comparativamente económicos, tienen la ventaja de tolerar grandes deformaciones sin perder resistencia.


Figura 3.14 Muros de gavión

 

Pantallas: consisten de una malla metálica sobre la cual se proyecta concreto (shotcrete) recubriendo toda la cara del talud. Es común “atirantar” esta corteza de concreto armado mediante anclajes que atraviesan completamente la superficie de falla para posteriormente ser tensados y ejercer un empuje activo en dirección opuesta al movimiento de la masa de suelo. La figura 3.15 muestra el corte típico de una pantalla atirantada.


Figura 3.15 Sección transversal y frontal de una pantalla

to previous section to next section

Please provide your feedback   English  |  French  |  Spanish