Home page  |  About this library  |  Help  |  Clear       English  |  French  |  Spanish  
Expand Document
Expand Chapter
Full TOC
to previous section to next section

close this bookA Guide to the Development of on-site Sanitation (WHO; 1992; 246 pages)
View the documentPreface
open this folder and view contentsPart I. Foundations of sanitary practice
close this folderPart II. Detailed design, construction, operation and maintenance
open this folder and view contentsChapter 5. Technical factors affecting excreta disposal
open this folder and view contentsChapter 6. Operation and maintenance of on-site sanitation
open this folder and view contentsChapter 7. Components and construction of latrines
close this folderChapter. 8 Design examples
View the documentIntroduction
View the documentPit latrine design
View the documentSeptic tank design
View the documentAqua-privy design
View the documentDisposal of effluent from septic tanks and aqua-privies
View the documentComposting toilets
open this folder and view contentsPart III. Planning and development of on-site sanitation projects
View the documentReferences
View the documentSelected further reading
View the documentGlossary of terms used in this book
View the documentAnnex 1. Reuse of excreta
View the documentAnnex 2. Sullage
View the documentAnnex 3. Reviewers
View the documentSelected WHO publications of related interest
View the documentBack Cover

Composting toilets

Double-vault latrines

The design of a double-vault latrine is similar to that of a pit latrine, i.e., the volume of each vault is calculated using the formula:

V = N × P × R


V = the effective volume of the vault (m3)


N = the number of years the vault must last before becoming full


P = the average number of users


R = the estimated sludge accumulation rate for a single person (m3 per year).

The difficulty with vault design is that very little information exists on the sludge accumulation rate in vaults where excreta are mixed with ash and other organic material, and there has been little research into the pathogen survival rate in such an environment.

Desludging period

Pit latrines are usually designed such that excreta are not handled for two years. Since the inside of a composting toilet is similar to that of a pit latrine, it is reasonable to assume that it should be designed using similar parameters. However, some researchers disagree with this, saying that the low moisture content of the compost produces very alkaline conditions that destroy the pathogens in a much shorter time. Times as low as four months have been suggested. In the absence of more accurate information, however, a two-year retention time is recommended.

Sludge accumulation rates

The accumulation rate for the excreta component of the compost can be determined in the same way as for a double-pit latrine. In the absence of more accurate local information, figures 50% greater than those given in Table 5.3 are suggested.

Estimating the volume of ash and other organic material is more difficult. Experience in Viet Nam indicates that approximately twice the volume of faeces has to be added (Jayaseelan et al., 1987). Rybczynski (1981) suggested five times the volume of faeces, and Kalbermattan et al. (1980) recommended allowing 0.3 m3 per person per year for all wastes.

In the absence of information to the contrary, it is suggested that the total sludge build-up rate is calculated as three times the estimated faecal build-up rate.

Example 8.8

Design a double-vault composting toilet for a family of six who use paper for anal cleaning.

The effective volume of each vault (V) must be:

2 × 6 × (0.06 × 1.5 × 3) = 3.24 m3

Vaults are usually sealed when they are three-quarters full, therefore the actual volume of the vault must be:

If the vault has a plan area of 1.3 × 1.3 m, the depth will be:

Continuous composting toilets

Even fewer design data are available for continuous composting toilets than for double-vault latrines. Past designs have been empirical and little published information exists indicating the level of their success. It is suggested that, until more data are available, the size of the primary tank in the toilet should be based on the formulae and factors used for double-vault latrines. The second tank should be 10-20% of the size of the first tank. The floors of both tanks should slope at an angle of 30° to the horizontal. No design data exist for calculating the size and number of aeration channels or the diameter and height of the ventilation pipe.

Example 8.9

Using the information given in Example 8.8, design an appropriate continuous composting toilet.

From Example 8.8 the volume of the primary tank should be 4.32 m3.

The volume of the second tank will be:

4.3 × 0.15= 0.65 m3

Assuming the first tank is 1.2 m wide and 2.2 m long then its depth will be 1.65 m.

The length of the second tank will be:

This is short and would make emptying very difficult; increase the length to 0.5 m.

Since the vault floor must slope at an angle of 30°, the depth of excavation at the outlet end will be greater than the depth at the inlet.

Assuming the floor of the second tank is horizontal the internal floor level will be at a depth of:

1.65 + 2.2 tan 30° = 2.9 m

Fig. 8.2 shows the final internal dimensions of the tank.

Fig. 8.2. Internal dimensions of the continuous composting toilet designed in example 8.9


WHO 91499


to previous section to next section

Please provide your feedback   English  |  French  |  Spanish